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Abstract-The paper considers the problem of optimization of mechanical systems described by partial
differential equations. The shape of the region of integration of these equations is not specified beforehand
but is to determined from the condition that a certain integral functional attains an extremal value. The
mathematical optimization problem is reduced to a variational one having no differential constraints and the
necessary optimality conditions are derived. The latter are used for seeking the cross-sectional shape of
elastic bars of maximum torsional rigidity. Exact and approximate analytical solutions are given and the
effectiveness of the optimal solutions is estimated.

INTRODUCTION
The paper deals with the problem of finding the cross-sectional shape of elastic bars that has the
maximum torsional rigidity. As well as having a direct practical application such problems are of
great interest from a purely mathematical angle, viz. from the point of view of developing
effective analytical methods for optimizing mechanical systems that are described by (elliptical)
partial differential equations.

The problem of optimizing the cross-sectional shape of an elastic bar under torsion was first
considered by Polya (the results of his investigations are contained, for example, in [1]).
Employing the symmetrization theorem he showed that among all the bars of a simply-connected
and convex cross-section the circular bar has the maximum torsional rigidity.

Klosowicz and Lurie [2] considered the optimal design problem of bars made of two elastic
materials with different shear moduli. It should be mentioned that these authors gave solutions
for the optimal distribution of the materials along the cross-section having the maximum or the
minimum torsional rigidity and revealed qualitatively certain characteristic features of the
optimal solutions.

In the present paper we consider the optimal design problem of anisotropic elastic bars and of
homogeneous elastic bars with a multiply-connected (hollow) cross-section. Initially we study a
more general mathematical optimization problem for a class of (elliptical) partial differential
equations and derive the necessary optimality conditions. The latter are then used for solving the
optimal design problem of an anisotropic elastic bar under torsion. It is shown that the bar with
maximum torsional rigidity will have an elliptical cross-section.

Next we solve problems of optimization of thin, homogeneous isotropic bars with a
doubly-connected cross-section using a perturbation technique (method of small parameter).
Characteristic features of the optimal shapes are revealed and the effectiveness of optimal
solutions estimated. The perturbation technique used here allows us to obtain analytical solutions
(with any desired degree of accuracy) and can be used for the optimal design of homogeneous
(heterogeneous), isotropic (anisotropic) bars of a multiply-connected cross-section.

1. VARIATIONAL PROBLEM FOR A REGION WITH UNKNOWN BOUNDARY

Let the function cP satisfy, in a simply-connected region D, the partial differential equation

and the boundary condition

(x,y) ED 0.1 )

cP = 0, (x,y) E r (1.2)

on the contour r bounding the region D. The coefficients a = a (x, y), b = b (x, y), c = c (x, y) are
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given, continuously differentiable functions satisfying the requirement

a > 0, ab - c' > 0, ( 1.3)

and m is a given constant. Subscripts denote differentiation with respect to the corresponding
spatial coordinate.

The area of the region D is denoted by S

JJdx dy = S,
D

(1.4)

and is supposed to be given.
The problem under consideration consists in finding the shape of the contour r that satisfies

the isoperimetric condition (1.4) and for which the functional K(f) achieves a maximum

K(f) =JJ¢ dx dy ~max.
D

(1.5)

The optimization problem formulated above is one with a differential constraint (1.1). Let us
reduce it to a variational problem with no such constraints. (Such problems have been dealt with
earlier, see, for example, [3]). In this connection, consider the following. As is well known, if the
boundary contour r is given and the condition (1.3) is satisfied, the function ¢, being the solution
of the boundary value problem (1.1)-(1.2), reduces the integral function to a minimum

J = JJ(a¢/ - 2c¢.eb,. + beb/ - 2meb) dx dy.
D

(1.6)

The converse is also true, i.e. the function ¢ which reduces the functional J to a minimum is a
solution of the boundary value problem (1.1 H 1.2).

We now show that, for a function ¢ which reduces the functional (1.6) to a minimum subject
to the condition (1.2), the following equality holds good

J=-mK.

Using conditions (1.1), (1.2) and (1.5), we can write the following

-mK = - JJ¢m dx dy = - JJ¢[(aeb. - c¢,). +(b¢, - c¢.),] dx dy
/) f)

= - JJ[¢.(a¢. - c¢,) + ¢,(beb, - ceb,)] dx dy,
/)

whence follows the required relation

J = [fJ(a¢/ - 2c¢,¢, + b¢/) dx dy - mff ¢ dx dy]
f) J)

-m JI ebdxdy =-m II ¢dxdy =-mK.
n J)

(1.7)

(1.8)

The above formula (1.8) is a direct generalization of the corresponding equality, well-known in
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the theory of elastic bars under torsion [6]. Using the variational principle and the relation (1.8), we
have

K = - ~ min</>II (aeb/ - 2c4>x4>. + b4>/ - 2m4» dx dy.
I>

(1.9)

This expression allows us to reduce the initial optimization problem (1.1)-( 1.5) to a variational
one with no differential constraints

K * = maxrK(f)

=max,· min</> ~ II (a4>/ - 2c4>x4>y + b4>/ - 2m4» dx dy
D

(1.10)

It may be noted that the minimum with respect to 4> in (1.10) is sought among a class of
continuously differentiable functions satisfying the boundary condition (1.2), while the maximum
with respect to r is sought subject to the isoperimetric condition (1.4).

Let us derive the necessary optimality conditions determining the boundary of the region D.
In this connection we write the expression for the first variation of the functional J

8J = - 2II&f>[(a4>x - c4>yL + (b4>y - c4>x)y + m] dx dy
D

+2L84> [(a4>x - c4>y) dy - (b4>y - c4>x) dx]

+L8{(a4>/ + b4>/ - 2c4>xeby- 2m4» ds,

(l.ll)

where 8{ denotes the normal displacement of points on the contour r resulting from a variation of
the region D. As the function 4> is given on the contour r (it satisfies the boundary condition
(1.2», &f> = 0, and consequently the second integral on the right hand side of (1.11) drops out.
From the requirement that 8J = 0 (i.e., the necessary condition for extremum), the arbitrariness
of 84> in the region D and the boundary condition (1.2), we arrive at the eqn (1.1) and the equality

L8{(a4>/ - 2cebxeb. +b4>/) ds =O.

Furthermore, by taking into account the fact that 8{ satisfies the equation

J. 8{ ds = 0

which follows from the isoperimetric condition (1.4), and by using (1.12), we get

(1.12)

(1.13)

(1.14)

The equality (1.14) is the required optimality condition and serves to define the boundary rand
implies that the complementary strain energy density on the boundary is constant-in conformity
with similar optimality condition derived by Prager [4] and Masur[5]. A2 is an arbitrary constant
to be determined from the isoperimetric condition (1.4). Thus the shape of the optimal contour r
and the corresponding function 4>(x, y) may be found from the relations (1.1), (1.2), (1.4) and
(1.14).

2. OPTIMAL SHAPE OF AN ANISOTROPIC BAR UNDER TORSION

Consider the problem of an elastic bar under torsion. Let the bar lie along the axis z in a
rectangular cartesian coordinate system xyz and be subjected to torsional moments M at its ends.
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Let D denote the cross-section of the bar perpendicular to z-axis and f the boundary of the
region D. We introduce a stress function <p = <p(x, y) and express through it the non-vanishing
components T" and Tx: of the stress tensor

T" = {)<p,., (2.1)

where fJ is the angle of twist per unit length of the bar.
The stress function, as is well known, is determined by solving the partial differential equation

a¢u - 2e<PH + b¢,.,. =- 2 (2.2)

subject to the boundary conditions (1.2). Here, a, band e denote the elastic constants of the
anisotropic material of the bar.

The torsional rigidity K is calculated from <p

K = 2JJ¢ dx dy.
f)

(2.3)

It may be noted, that the twisting moment M, torsional rigidity K and the angle of twist fJ are
related through

M=KfJ.

The optimization problem considered here consists in seeking the contour f bounding the
region D that satisfies the condition (1.4) and is such that the torsional rigidity of the bar achieves
a maximum value, i.e.

K ..... maxl'. (2.4)

This problem is a particular case of the problem (1.1HI.5) (coefficients a, band e are constant),
and hence its solution can be found by using the optimality condition (1.14). Solving eqn (1.1),

together with the conditions (1.2) and (1.4), we get

¢ = 2(ab 1_ e 2) [~ - bx 2
- 2exy - all

f: bx 2 +2exy +ay2 = ~ (2.5)

In order to determine the constant ~, use is made of the isoperimetric equality (1.4). It is easy to
show that

and, hence, the optimal solution has the form

The torsional rigidity Kurt of the bar with optimal shape of the cross-section (2,6) is given by

52
K up

, = 21Ty(ab - e')'

(2.6)

(2.7)
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Let us compare the torsional rigidity of the optimal bar with that of a bar of circular cross-section
with the same area S in order to estimate the effectiveness of optimization. For the latter bar, we
have

(2.8)

From (2.7) and (2.8) it follows that

(2.9)

The constant f3 can easily be shown to satisfy the inequality 0:5 f3 :5 1.
It is instructive to specialize the above results to the case of an orthotropic bar, for which

c = 0, a = 1/Gz, b = 1/GJ, where GI and Gz denote the shear moduli in the x and y directions,
respectively. The optimal shape and the corresponding function <p take the form

(2.10)

The torsional rigidity K opt of the optimal bar is given by

(2.11)

The relative increase in the torsional rigidity of the optimal orthotropic bar K opt over that of a bar
of circular cross-section K cir of the same area S is given by

K opt - K cir = GI +Gz _ 1.
Kcir 2y(G,Gz)

(2.12)

From (2.12) it is seen, that the optimization becomes more effective both as GI/Gz~O and
GIlGz~ 00. If G1 =Gz= G, (Le., the case of a homogeneous isotropic bar under torsion), we have

K opt - K cir = O.
K cir

It is known that in this case Kopt = Kcir = GSz/27r. In other words, the optimal homogeneous
isotropic bar under torsion is circular in shape. This result was proved by Polya[l] through the
use of the symmetrization theorem.

It should be noted that for a homogeneous isotropic bar of optimal cross-sectional shape the
stress intensity along the boundary of the region D is constant

and the optimality condition (1.14) takes the form

where n is the outer normal to the contour r which is a special case of the general optimality
condition derived by Prager[4].

In an absolutely analogous manner we may consider the dual optimization problem-that of
finding the shape of a bar with a minimum cross-sectional area-
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for a given torsional rigidity
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s = JJdx dy --+minI
/)

K = - ~ min"'" = K'.

(2.13)

(2.14)

The optimality condition for the problem (2.13H2.14) has the same form as before (1.14).
Therefore, without going into details, let us only present the final result

1': bx2+ 2cxy + ay2 = (ab - c2)3/4y (2K' /1r)

S = y(27rK')(ab - C2)1/4.

3. OPTIMAL SHAPE OF A BAR WITH A MULTIPLY·CONNECTED CROSS·SECTION
Consider a homogeneous isotropic bar with a doubly-connected cross-section subjected to a

twisting moment. Let 1'0 and r denote, respectively, the inner and the outer boundaries of the
region D. The stress Txz and Tyz may be expressed through a stress function c/J (see [6])

Tyz = -G8c/J., (3.1)

which is defined, as usual, by the boundary-value problem

c/J =0, (x, y) E r
c/J=C, (x,y) E 1'0.

(3.2)

(3.3)

(3.4)

The solution of this boundary-value problem depends on the constant C which is sought by using
the condition

r ac/J ds = -20.,
)1'.. an

where 0. is the area of the region bounded by the contour 1'0'
The torsional rigidity K is determined from

K = 2(JJc/J dx dy + Co.).
f)

(3.5)

(3.6)

It should be noted that the expressions for the rigidity K and the function c/J given above differ
from the corresponding expressions of previous section (isotropic material) by the constant
multiplier G.

The boundary 1'0 is assumed to be given, and we are required to find the shape of the boundary
I' for which the functional (3.6) achieves a maximum value subject to the condition (1.4). In order
to derive the necessary optimality condition for the present problem one could follow arguments
similar to those of Section I for a simply-connected region. However, for methodological reasons
an alternate procedure is used here. Consider another function 1/1, related to c/J through

1/1, = c/Jy + y; I/Iy = c/Jx - x. (3.7)

The function 1/1 satisfies Laplace's equation in the region D

I/IH + I/Iy, = 0, (3.8)
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and the following condition on the boundary of the region
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(3.9)

where D. and Dy denote the direction cosines of a unit normal to f" + f. The torsional rigidity is
given by the expression

K = 1+ff (xr/Jy - Yr/J.) dx dy,
D

1= ff(x
2 + y2

) dx dy.
()

(3.10)

For a region D of given shape the function r/J(x, y) may be found by solving the variational
problem [6]

J1 =~f f {(r/J. - y)2+(r/Jy +x)2}dx dy~minoj,'
D

(3.11)

The extremum of the functional J1 fulfils the condition K*= 2J1• Therefore the original
optimization problem may be rewritten as

(3.12)

The minimum of the functional J1 with respect to I/J is sought among a class of continuously
differentiable functions r/J satisfying the boundary condition (3.9). It should be mentioned,
however, that this minimum may be sought among a wider class of functions not necessarily
satisfying the said boundary condition. Insofar as (3.9) is a "natural" condition for the functional
(3.11), the solution of the variational problem found among a class of continuously differentiable
functions will "automatically" fulfil this condition. The maximum of the functional J1 with
respect to f is sought among closed curves satisfying the isoperimetric condition (1.4). The
expression for the first variation of J1 has the form

81.=-2 ff(r/Jxx +r/Jyy)or/Jdxdy +2 L'lo G~-yn.+xDy}lJr/JdS
D

Putting 811 = 0and knowing that or/J is arbitrary, we arrive at relations (3.8), (3.9) and the equality

(3.13)

From (3.13) and the isoperimetric condition

r of ds = 0,Jr

we get the necessary optimality condition

(3.14)

or in terms of the original stress function cP

(3.15)
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4. SOLUTION OF THE OPTIMIZATION PROBLEM BY A PERTURBATION TECHNIQUE

In the sequel it is convenient to employ a curvilinear coordinate system .1', t related to the
contour f o• The coordinate t of a point QED is the distance along the normal QA from the
point Q to the contour r0, whiles is the distance along the contour measured from a certain fixed
point 0 to the point A. In terms of the spatial variables .1', t the relations (3.2)-(3.6) take the form

t
T= 1+­

p
(T4>,), + (T 'eb,L = -2T;

4>(.1', h) = 0

eb(s, 0) = e
t d>,(s,O)ds=-2nJ,
(' (hTdtds=S

Jo Ju

K =2(f f T4> dt ds + en). (4.1)

where h = h(.I') is the equation of the contour f, p the radius of curvature of the contour f" and L
its length.

4.1. It will be assumed, that

max,h(s)=H~L

min, p(s) - L.

(0 ~ .I' ~ L)

(4.2)

For the sake of convenience, let us introduce new variables

.1'= Ls', t=Ht', h=Hh', 4>=HL4>'

n = L 2n', S = HLS', p = Lp', K = HL 'K'

c= HLC, A =LA',

(4.3)

and a small parameter f = HIL.
In terms of the new variables, relations (4.1) and (3.15) take the form (primes have been left

out)

(T4>,), +f 2(r-'4>,), = -2fT; T= I +~
P

d>,(s,h)=-A, 4>(s,O)=-C, d>(s,h)=O

(' (' ( fh 2)J" 4>,(.1',0) ds = -2n. Jo h + IP ds = S,

K = 2(en + f f f Teb dt dS) (4.4)

The solution of this problem will be sought in the form of series expansions with respect to the
small parameter f

d> = 4> 0 + f4> ' + f 2 d> 2 + .

h = h" -+- fh ' + f 2h 2 + .
K=K"+fK'+f 2K 2 +. ".

(4.5)

For finding the zeroth, first and second order approximate solutions it is sufficient to substitute
the expansions (4.5) into the relations (4.4) and to equate the coefficients of like powers in f. The
resulting boundary-value problems serve to determine the unknown functions. Thus, for
determining the unknown functions of zeroth order we have
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c/J?, = 0, c/J°(s, 0) = Co, c/J°(s, hO) = 0

c/J,O(s, hO) = -A 0, f c/J,O(s, 0) ds = -20

f hOds = S.

Similarly the first approximation is the solution of the boundary-value problem

c/J;,=-2-c/J,O, c/JI(S,O)=C I
, </J'(s,hO)=O

P

c/J,I(S, hO) = -A I

and the second approximation-that of the problem

c/J;, =- .!.[(tc/J,'), +2t) - c/J~" c/J2(S, 0) =C2

P

c/J2(s,h~=A'h'+Aoho

c/J/(s, hO) = (2 + ~O)h I - A2

II II II hOh 'c/J/(s, 0) ds = 0, h2ds = - -- ds.
° 0 ° p

283

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

From the zeroth, first and the second order approximate solutions we can define the torsional
rigidity of the bar (the functional of the variational problem)

K = KO+ fK 1+ f 2K 2 = 2COO+ 2f(f ro c/J°dt ds + C10)

+ 2f 2 (f ro c/J I dt ds + C20) + 0(f 3
).

Let us proceed with the solution of the above boundary-value problems. We start with the zeroth
order terms. From the relations (4.6) and (4.7), we have

(4.11)

Substituting (4.11) into the isoperimetric equality (4.8) and performing elementary transforma­
tions, we find

Finally, the zeroth order solution takes the form

(4.12)

Thus, in the zeroth order approximation for hollow bars with fairly shallow (large radius of
curvature) inner contours the optimal bar will be of constant thickness.

Similarly, the solution of the boundary-value problem (4.\0) furnishes the quantities h t, c/J t,
C. AI and K I. For the sake of brevity, we present only the final result
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hi = _ 2S~
p

eb I = t~(!! -I) +2sn(1' ds _1) +s~ _2ns211 ds
p up p up

C'=S2(I-2nf~S), A'=2S(I-nf~S)

K 1 =4ns2(I-n f ~s). (4.13)

Thus, to within the terms of order f2. we have

h = hOhh 1 = S(I- f2~)'

or in terms of the original dimensioned quantities,

(4.14)

(4.15)

From (4.14) and (4.15) it is evident that the wall thickness of the optimal bar decreases as we
move along the inner contour in the direction of increasing curvature.

In order to determine the terms of order f2, it is necessary to integrate the eqn (4.10) and to
choose the arbitrary constants of integration from the boundary and the isoperimetric conditions.
Finally, we get

(4.16)

Using the expressions for KO, K ' and K 2 from (4.12), (4.13) and (4.16) and reverting to the
original dimensioned quantities, we get the following expression for the torsional rigidity of the
optimal bar

Let us compare the torsional rigidity K of the optimally designed bar with that of a bar of
constant thickness (h (s) = const.) having the same inner contour and the cross-sectional area K'.
Performing similar calculations as for the optimization problem, we have, to the same degree of
accuracy, the following expression for K'

From (4.17) and (4.18) we get

_ ,_S3n 2[ lLds (1IdS)2]tJ.K - K - K - -6- L -,- -.
Lop· ° p

(4.19)
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Employing the Schwarz inequality it is easy to show that the expression within the square
brackets in (4.19) is always positive, and, therefore, for any inner contour r°having minsp(s) - L
the following inequality is true:

ilK ~o, (4.20)

the equality sign holding for the case where r° is the circumference of a circle (p =const. = R,
R - radius of the circle). In this case the thin-walled optimal bar is of constant thickness.

4.2. In Section 4.1 it was assumed that the minimum radius of curvature is of the order of the
length L of the contour r0. In other words, the choice was limited to only weakly curved contours.
Consider now the case, where

minsp(s)-H

everywhere on the contour. Employing again the variables (4.3) the necessary conditions for the
solution of the present problem can be obtained by formally replacing p in (4.4) by Ep. Using the
perturbation technique we arrive at the following boundary-value problem defining the zeroth
order functions

[(I+~}Plol =0, 4>°(s, 0) = Co, 4>°(s,hO)=O

4>,O(s, hO) = -,\ °

f 4>,O(s, 0) ds = -2n, f [hO +(~~2] ds = S.

(4.21)

The solution of the problem (4.21) gives the following expressions for the stress function
4>°(s, t) and the wall thickness distribution hO(s) for the optimal bar

[I
I d ]-1

4>°(s, t) = 2!1 ° (s hO)
p In 1+­

p

( hO) ( hO)p I +P In 1+P = const. (4.22)

From the second relation above it is evident that the thickness h(s) decreases as we move along
the inner contour f ° in the direction of increasing curvature.

Analogous calculations can be made when certain parts of the inner contour f o satisfy

In this case, it is easy to show that the optimal thickness distribution of the parts with large
curvature is related to the radius of curvature of the contour f ° through

where 'Y is a constant determined by the isoperimetric equality.

5. CONCLUSIONS

The present work considers optimization problems of mechanical systems described by
(elliptical) partial differential equations. The necessary optimality conditions are derived, and
analytical solutions of the optimization problems for elastic bars under torsion are found. It is
shown that among anisotropic bars the one with an elliptical cross-section has the maximum
torsional rigidity, and that the increase in the torsional rigidity over that of a bar of circular
cross-section with the same area is bigger, the higher the degree of anisotropy. For thin-walled
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isotropic bars of a doubly-connected cross-section it is shown that the optimal shape of the outer
contour depends significantly on the curvature of the inner contour, the shape of which is
assumed to be given. if the inner contour is of small curvature, then in the zeroth order
approximation the optimal bar will have a cross-section of constant wall thickness. Moreover, the
first and higher order corrections to this solution show that, at the parts of the inner contour that
have a larger curvature, there is a certain reduction in the wall thickness of the optimal bar. On
the other hand, if the inner contour is of large curvature, the optimal wall thickness distribution,
already in the zeroth approximation, is no longer uniform, but diminishes as we move along the
inner contour in the direction of increasing curvature.

The possibilities of the analytical procedure are not exhausted by the various types of
optimization problems considered in the present work. Likewise, the perturbation technique may
be used to solve the problem of optimizing the thickness distribution of a thin-walled bar under
torsion with a given outer contour, as well as a bar of multiply-connected cross-section. Various
other constraints can be accounted for within the framework of the technique used. Thus, for
example, one may optimize the shape of a simply- or multiply-connected cross-section when the
shape of a part of the contour is specified and only the rest of the contour can be varied. Such
problems naturally arise in connexion with build-up bars.

Finally, it should be noted that the equation of the type (1.1) describes various different
physical phenomena. Therefore, by employing available analogies (hydrodynamic, elastic,
electrical, etc. (7)), it is possible to interpret the present results accordingly.
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